Floor Fields for Tracking in High Density Crowd Scenes
نویسندگان
چکیده
This paper presents an algorithm for tracking individual targets in high density crowd scenes containing hundreds of people. Tracking in such a scene is extremely challenging due to the small number of pixels on the target, appearance ambiguity resulting from the dense packing, and severe inter-object occlusions. The novel tracking algorithm, which is outlined in this paper, will overcome these challenges using a scene structure based force model. In this force model an individual, when moving in a particular scene, is subjected to global and local forces that are functions of the layout of that scene and the locomotive behavior of other individuals in the scene. The key ingredients of the force model are three floor fields, which are inspired by the research in the field of evacuation dynamics, namely Static Floor Field (SFF), Dynamic Floor Field (DFF), and Boundary Floor Field (BFF). These fields determine the probability of move from one location to another by converting the long-range forces into local ones. The SFF specifies regions of the scene which are attractive in nature (e.g. an exit location). The DFF specifies the immediate behavior of the crowd in the vicinity of the individual being tracked. The BFF specifies influences exhibited by the barriers in the scene (e.g. walls, no-go areas). By combining cues from all three fields with the available appearance information, we track individual targets in high density crowds.
منابع مشابه
Towards crowd density-aware video surveillance applications
Crowd density analysis is a crucial component in visual surveillance mainly for security monitoring. This paper proposes a novel approach for crowd density measure, in which local information at pixel level substitutes a global crowd level or a number of people per-frame. The proposed approach consists of generating automatic crowd density maps using local features as an observation of a probab...
متن کاملNew insights into crowd density analysis in video surveillance systems. (Nouvelles méthodes pour l'étude de la densité des foules en vidéo surveillance)
Along with the widespread growth of surveillance cameras, computer vision algorithms have played a fundamental role in analyzing the large amount of videos. However, most of the current approaches in automatic video surveillance assume that the observed scene is not crowded, and is composed of easily perceptible components. These approaches are hard to be extended to more challenging videos of ...
متن کاملSpatio-temporal crowd density model in a human detection and tracking framework
Recently significant progress has been made in the field of person detection and tracking. However, crowded scenes remain particularly challenging and can deeply affect the results due to overlapping detections and dynamic occlusions. In this paper, we present a method to enhance human detection and tracking in crowded scenes. It is based on introducing additional information about crowds and i...
متن کاملSaliency in Crowd
Theories and models on saliency that predict where people look at focus on regular-density scenes. A crowded scene is characterized by the cooccurrence of a relatively large number of regions/objects that would have stood out if in a regular scene, and what drives attention in crowd can be significantly different from the conclusions in the regular setting. This work presents a first focused st...
متن کاملCrowd counting via scale-adaptive convolutional neural network
The task of crowd counting is to automatically estimate the pedestrian number in crowd images. To cope with the scale and perspective changes that commonly exist in crowd images, state-of-the-art approaches employ multi-column CNN architectures to regress density maps of crowd images. Multiple columns have different receptive fields corresponding to pedestrians (heads) of different scales. We i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008